判断函数有界性的最简单技巧

发布时间:2022-08-30分类:初三辅导

判断函数有界性:设函数f(x)在区间X上有定义,如果存在M>0,对于一切属于区间X上的x,恒有|f(x)|≤M,则称f(x)在区间X上有界,否则称f(x)在区间上无界。

函数的有界性

判断函数有界性的技巧

设函数f(x)的定义域为D,f(x)集合D上有定义。

如果存在数K1,使得f(x)≤K1对任意x∈D都成立,则称函数f(x)在D上有上界。

反之,如果存在数字K2,使得f(x)≥K2对任意x∈D都成立,则称函数f(x)在D上有下界,而K2称为函数f(x)在D上的一个下界。

如果存在正数M,使得|f(x)|≤M对任意x∈D都成立,则称函数在X上有界。如果这样的M不存在,就称函数f(x)在X上无界;等价于,无论对于任何正数M,总存在x1属于X,使得|f(x1)|>M,那么函数f(x)在X上无界。

此外,函数f(x)在X上有界的充分必要条件是它在X上既有上界也有下界。

相关文章