绝对值不等式的解法

发布时间:2022-10-13分类:初三辅导

解绝对值不等式必须设法化去式中的绝对值符号,绝对值不等式的解法有几何意义法、讨论法、平方法以及函数图像法。

绝对值不等式的几种解法

(一)几何意义法

例如:求不等式|x|<1的解集

不等式|x|<1的解集表示到原点的距离小于1的点的集合,

所以不等式|x|<1的解集为{x|-1<x<1}。

(二)讨论法

例如:求不等式|x|<1的解集

①当x≥0时,原来的不等式可以化为x<1,∴0≤x<1。

②当x<0时,原来的不等式可以化为-x<1,∴-1<x<0。

综上所述,不等式|x|<1的解集为{x|-1<x<1}。

(三)平方法

例如:求不等式|x|<1的解集

把原不等式的两边平方可以得到:x2<1,即x2-1<0,即(x+1)(x-1)<0

即-1<x小于1,∴不等式|x|<1的解集为{x|-1<x<1}。

(四)函数图像法

例如:求不等式|x|<1的解集

从函数观点看,不等式|x|<1的解集表示函数y=|x|的图像位于y=1的图像下方的部分对应的x的取值范围。所以不等式|x|<1的解集为{x|-1<x<1}。

绝对值不等式的性质

|a|表示数轴上的点a与原点的距离叫做数a的绝对值。|a|-|b|≤|a±b|≤|a|+|b|。

两个重要性质:

1、|ab|=|a||b|

|a/b|=|a|/|b|(b≠0)

2、|a|<|b|可逆推出|b|>|a|

| |a|-|b| |≤|a+b|≤|a|+|b|,当且仅当ab≤0时左边等号成立,ab≥0时右边等号成立。

另外有:|a-b|≤|a|+|-b|=|a|+|-1|*|b|=|a|+|b|

| |a|-|b| |≤|a±b|≤|a|+|b|

相关文章