初中数学解方程必背公式汇总

发布时间:2022-11-10分类:初三辅导

初中数学解方程是很多人都比较重视的,下面小编就整理了,供大家参考。

乘法与因式分解:

a2-b2=(a+b)(a-b)

a3+b3=(a+b)(a2-ab+b2)

a3-b3=(a-b)(a2+ab+b2)

三角不等式:

|a+b|≤|a|+|b|

|a-b|≤|a|+|b|

|a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b|-|a|≤a≤|a|

一元二次方程的解:

-b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a

根与系数的关系

X1+X2=-b/aX1*X2=c/a注:韦达定理

判别式b2-4a=0注:方程有相等的两实根

b2-4ac>0注:方程有一个实根

b2-4ac<0注:方程有共轭复数根

两角和公式:

sin(A+B)=sinAcosB+cosAsinB

sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)

ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式:

tan2A=2tanA/(1-tan2A)

ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式:

sin(A/2)=√((1-cosA)/2)

sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2)

cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA))

tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA))

ctg(A/2)=-√((1+cosA)/((1-cosA))

和差化积:

2sinAcosB=sin(A+B)+sin(A-B)

2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B

-2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB

tanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB

-ctgA+ctgBsin(A+B)/sinAsinB

某些数列前n项和:

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2

1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1)

12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/4

1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理:a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径

余弦定理:b2=a2+c2-2accosB注:角B是边a和边c的夹角

圆的标准方程:(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标

圆的一般方程:x2+y2+Dx+Ey+F=0注:D2+E2-4F>0

抛物线标准方程:y2=2px

y2=-2px

x2=2py

x2=-2py

直棱柱侧面积:S=c*h

斜棱柱侧面积:S=c'*h

正棱锥侧面积:S=1/2c*h'

正棱台侧面积:S=1/2(c+c')h'

圆台侧面积:S=1/2(c+c')l=pi(R+r)l

球的表面积:S=4pi*r2

圆柱侧面积:S=c*h=2pi*h

圆锥侧面积:S=1/2*c*l=pi*r*l

弧长公式:l=a*r,a是圆心角的弧度数r>0

扇形面积公式:s=1/2*l*r

锥体体积公式:V=1/3*S*H

圆锥体体积公式:V=1/3*pi*r2h

斜棱柱体积:V=S'L注:其中,S'是直截面面积,L是侧棱长

柱体体积公式:V=s*h

圆柱体:V=pi*r2h

相关文章