初一数学:下册必考知识总结

发布时间:2017-06-08分类:初一辅导

  一:有理数

  知识网络:

  概念、定义:

  1、大于0的数叫做正数(positive number).

  2、在正数前面加上负号“-”的数叫做负数(negative number).

  3、整数和分数统称为有理数(rational number).

  4、人们通常用一条直线上的点表示数,这条直线叫做数轴(number axis).

  5、在直线上任取一个点表示数0,这个点叫做原点(origin).

  6、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value).

  7、 由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.

  8、正数大于0,0大于负数,正数大于负数.

  9、两个负数,绝对值大的反而小.

  10、有理数加法法则

  (1)同号两数相加,取相同的符号,并把绝对值相加.

  (2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0.

  (3)一个数同0相加,仍得这个数.

  11、有理数的加法中,两个数相加,交换交换加数的位置,和不变.

  12、有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.

  13、有理数减法法则

  减去一个数,等于加上这个数的相反数.

  14、有理数乘法法则

  两数相乘,同号得正,异号得负,并把绝对值向乘.

  任何数同0相乘,都得0.

  15、有理数中仍然有:乘积是1的两个数互为倒数.

  16、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等.

  17、 三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.

  18、 一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.

  19、有理数除法法则

  除以一个不等于0的数,等于乘这个数的倒数.

  20、两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.

  21、 求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power).在an 中,a叫做底数(basenumber),n叫做指数(exponeht)

  22、根据有理数的乘法法则可以得出

  负数的奇次幂是负数,负数的偶次幂是正数.

  显然,正数的任何次幂都是正数,0的任何次幂都是0.

  23、做有理数混合运算时,应注意以下运算顺序:

  (1)先乘方,再乘除,最后加减;

  (2) 同级运算,从左到右进行;

  (3) 如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.

  24、把一个大于10数表示成a×10n 的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学计数法.

  25、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数(approximate number).

  26、从一个数的左边的第一个非0数字起,到末尾数字止,所有的数字都是这个数的有效数字(significant digit)

  注:黑体字为重要部分

  二:整式的加减

  知识网络:

  概念、定义:

  1、都是数或字母的积的式子叫做单项式(monomial),单独的一个数或一个字母也是单项式.

  2、单项式中的数字因数叫做这个单项式的系数(coefficient).

  3、 一个单项式中,所有字母的指数的和叫做这个单项式的次数(degree of a monomial).

  4、几个单项的和叫做多项式(polynomial),其中,每个单项式叫做多项式的项(term),不含字母的项叫做常数项(constantly

  term).

  5、多项式里次数最高项的次数,叫做这个多项式的次数(degree of a polynomial).

  6、把多项式中的同类项合并成一项,叫做合并同类项.

  合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变.

  7、如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;

  8、如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.

  9、一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.

  三:一元一次方程

  知识网络:

  概念、定义:

  1、列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出还有未知数的等式——方程(equation).

  2、含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程(linear equation withone unknown).

  3、分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法.

  4、等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.

  5、等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等.

  6、把等式一边的某项变号后移到另一边,叫做移项.

  7、应用:行程问题:s=v×t 工程问题:工作总量=工作效率×时间

  盈亏问题:利润=售价-成本 利率=利润÷成本×100%

  售价=标价×折扣数×10% 储蓄利润问题:利息=本金×利率×时间

  本息和=本金+利息

  三:图形初步认识

  知识网络:

  概念、定义:

  1、 我们把实物中抽象的各种图形统称为几何图形(geometric figure).

  2、有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,它们是立体图形(solidfigure).

  3、有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,它们是平面图形(planefigure).

  4、将由平面图形围成的立体图形表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图(net).

  5、几何体简称为体(solid).

  6、包围着体的是面(surface),面有平的面和曲的面两种.

  7、面与面相交的地方形成线(line),线和线相交的地方是点(point).

  8、点动成面,面动成线,线动成体.

  9、经过探究可以得到一个基本事实:经过两点有一条直线,并且只有一条直线.

  简述为:两点确定一条直线(公理).

  10、当两条不同的直线有一个公共点时,我们就称这两条直线相交(intersection),这个公共点叫做它们的交点(pointof intersection).

  11、点M把线段AB分成相等的两条线段AM和MB,点M叫做线段AB的中点(center).

  12、经过比较,我们可以得到一个关于线段的基本事实:两点的所有连线中,线段最短.简单说成:两点之间,线段最短.(公理)

  13、连接两点间的线段的长度,叫做这两点的距离(distance).

  14、角∠(angle)也是一种基本的几何图形.

  15、把一个周角360等分,每一份就是1度(degree)的角,记作1°;把一度的角60等分,每一份叫做1分的角,记作1′;把1分的角60等分,每一份叫做1秒的角,记作1″.

  16、从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线(angular bisector).

  17、如果两个角的和等于90°(直角),就是说这两个叫互为余角(complementary

  angle),即其中的每一个角是另一个角的余角.

  18、如果两个角的和等于180°(平角),就说这两个角互为补角(supplementary

  angle),即其中一个角是另一个角的补角

  19、等角的补角相等,等角的余角相等.

  第一章 整式的运算

  一.整式

  ※1.单项式

  ①由数与字母的积组成的代数式叫做单项式.单独一个数或字母也是单项式.

  ②单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数.

  ③一个单项式中,所有字母的指数和叫做这个单项式的次数.

  ※2.多项式

  ①几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.其中,不含字母的项叫做常数项.一个多项式中,次数最高项的次数,叫做这个多项式的次数.

  ②单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数.多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数.多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数.

  ※3.整式单项式和多项式统称为整式.

  二.整式的加减

  ¤1.整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.

  ¤2.括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘.

  三.同底数幂的乘法

  ※同底数幂的乘法法则:(m,n都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:

  ①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;

  ②指数是1时,不要误以为没有指数;

  ③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;

  ④当三个或三个以上同底数幂相乘时,法则可推广为 (其中m、n、p均为正数);

  ⑤公式还可以逆用:(m、n均为正整数)

  四.幂的乘方与积的乘方

  ※1.幂的乘方法则:(m,n都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.

  ※2..

  ※3.底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,

  如将(-a)3化成-a3

  ※4.底数有时形式不同,但可以化成相同.

  ※5.要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零).

  ※6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即 (n为正整数).

  ※7.幂的乘方与积乘方法则均可逆向运用.

  五.同底数幂的除法

  ※1.同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即 (a≠0,m、n都是正数,且m>n).

  ※2.在应用时需要注意以下几点:

  ①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.

  ②任何不等于0的数的0次幂等于1,即 ,如 ,(-2.50=1),则00无意义.

  ③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即 ( a≠0,p是正整数),而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的; 当a

相关文章